

OMM 60

OptoTech Freeform Measuring Machine

The new inexpensive freeform Measuring machine OMM 60 is an essential tool for quality inspection in freeform lens production. The OMM 60 is able to measure convex and concave lenses as well as grinded and polished surfaces.

Technical Data

	OMM 60
Application	Freeform Measuring Machine
Lens Diameter	10 mm - 60 mm
Max. Aperture	± 35°
Measuring Accuracy	± 1 μm
Measuring Cycles	Approx. 10 min./surface (depending on point density)
Measuring Method	Measuring Pin
Productivity	6 lenses/h
Software	OptoCMM
Dimensions	Width: 500 mm, Height: 740 mm, Depth: 800 mm
Weight (approx.)	220 kg
Disclaimer	All data are subject to change without notice. Please verify details with OptoTech.

Highlights

- The inexpensive freeform measuring machine OMM 60 is the ideal 3D-Measuring system for the statistical control of freeform processing machines for all kind of complex lenses
- Convex and concave lenses, grinded and polished surfaces can be measured
- The software is able to compare the processed lens with the theoretical map
- The measuring is done via a high precision measuring pin with an accuracy of ± 1 μm. The measuring results can be displayed in several ways.